Acerca de mí

Differential appearance and defense correlation evaluation regarding COVID-19 receptor ACE2 along with TMPRSS2 genetics in all of the standard and also growth tissues.
The experimental results demonstrate that PS-GDANet outperforms several widely accepted state-of-the-art pansharpening methods in terms of qualitative and quantitative assessment.This article investigates the joint effects of connection weight and time delay on pattern formation for a delayed reaction-diffusion BAM neural network (RDBAMNN) with Neumann boundary conditions by using the (k₁,k₂) mode Hopf-zero bifurcation. First, the conditions for k₁ mode zero bifurcation are obtained by choosing connection weight as the bifurcation parameter. It is found that the connection weight has a great impact on the properties of steady state. With connection weight increasing, the homogeneous steady state becomes inhomogeneous, which means that the connection weight can affect the spatial stability of steady state. Then, the specified conditions for the k₂ mode Hopf bifurcation and the (k₁,k₂) mode Hopf-zero bifurcation are established. By using the center manifold, the third-order normal form of the Hopf-zero bifurcation is obtained. Through the analysis of the normal form, the bifurcation diagrams on two parameters' planes (connection weight and time delay) are obtained, which contains six areas. Some interesting spatial patterns are found in these areas a homogeneous periodic solution, a homogeneous steady state, two inhomogeneous steady state, and two inhomogeneous periodic solutions.In this brief, we consider the problem of descriptors construction for the task of content-based image retrieval using deep neural networks. The idea of neural codes, based on fully connected layers' activations, is extended by incorporating the information contained in convolutional layers. It is known that the total number of neurons in the convolutional part of the network is large and the majority of them have little influence on the final classification decision. Therefore, in this brief, we propose a novel algorithm that allows us to extract the most significant neuron activations and utilize this information to construct effective descriptors. The descriptors consisting of values taken from both the fully connected and convolutional layers perfectly represent the whole image content. The images retrieved using these descriptors match semantically very well to the query image, and also, they are similar in other secondary image characteristics, such as background, textures, or color distribution. These features of the proposed descriptors are verified experimentally based on the IMAGENET1M dataset using the VGG16 neural network. For comparison, we also test the proposed approach on the ResNet50 network.Image smoothing is a prerequisite for many computer vision and graphics applications. In this article, we raise an intriguing question whether a dataset that semantically describes meaningful structures and unimportant details can facilitate a deep learning model to smooth complex natural images. To answer it, we generate ground-truth labels from easy samples by candidate generation and a screening test and synthesize hard samples in structure-preserving smoothing by blending intricate and multifarious details with the labels. Ipatasertib Akt inhibitor To take full advantage of this dataset, we present a joint edge detection and structure-preserving image smoothing neural network (JESS-Net). Moreover, we propose the distinctive total variation loss as prior knowledge to narrow the gap between synthetic and real data. Experiments on different datasets and real images show clear improvements of our method over the state of the arts in terms of both the image cleanness and structure-preserving ability. Code and dataset are available at https//github.com/YidFeng/Easy2Hard.Support vector machine (SVM) is a particularly powerful and flexible supervised learning model that analyzes data for both classification and regression, whose usual algorithm complexity scales polynomially with the dimension of data space and the number of data points. To tackle the big data challenge, a quantum SVM algorithm was proposed, which is claimed to achieve exponential speedup for least squares SVM (LS-SVM). Here, inspired by the quantum SVM algorithm, we present a quantum-inspired classical algorithm for LS-SVM. In our approach, an improved fast sampling technique, namely indirect sampling, is proposed for sampling the kernel matrix and classifying. We first consider the LS-SVM with a linear kernel, and then discuss the generalization of our method to nonlinear kernels. Theoretical analysis shows our algorithm can make classification with arbitrary success probability in logarithmic runtime of both the dimension of data space and the number of data points for low rank, low condition number, and high dimensional data matrix, matching the runtime of the quantum SVM.Network representation learning (NRL) has far-reaching effects on data mining research, showing its importance in many real-world applications. NRL, also known as network embedding, aims at preserving graph structures in a low-dimensional space. These learned representations can be used for subsequent machine learning tasks, such as vertex classification, link prediction, and data visualization. Recently, graph convolutional network (GCN)-based models, e.g., GraphSAGE, have drawn a lot of attention for their success in inductive NRL. When conducting unsupervised learning on large-scale graphs, some of these models employ negative sampling (NS) for optimization, which encourages a target vertex to be close to its neighbors while being far from its negative samples. However, NS draws negative vertices through a random pattern or based on the degrees of vertices. Thus, the generated samples could be either highly relevant or completely unrelated to the target vertex. Moreover, as the training goes, the gradient of NS objective calculated with the inner product of the unrelated negative samples and the target vertex may become zero, which will lead to learning inferior representations. To address these problems, we propose an adversarial training method tailored for unsupervised inductive NRL on large networks. For efficiently keeping track of high-quality negative samples, we design a caching scheme with sampling and updating strategies that has a wide exploration of vertex proximity while considering training costs. Besides, the proposed method is adaptive to various existing GCN-based models without significantly complicating their optimization process. Extensive experiments show that our proposed method can achieve better performance compared with the state-of-the-art models.